Evaluation and Enhancement of Supraconvergence Effectson
Nonuniform and Conformal FDTD meshes

Malgorzata Celuch - Marcysiak

Institute of Radioelectronics, Warsaw University of Technology, ul.Nowowiejska 15/19,
Warsaw 03-938, Poland, E-mail: m.celuch@ire.pw.edu.pl

ABSTRACT —Numerical errorsarising on nonuniform FDTD
meshes have been revealed and classified. Formulae for
evaluating those errors have been analytically derived and
verified in simulations. Simple recipes for suppressing the
errors and enhancing their order of supraconvergence with
refined discretisation have been proposed. Conformal
modelling based on directional and linearised cell merging is
introduced and recommended for practical microwave circuit
simulations.

|. INTRODUCTION

A. Sate of the art

With the proliferation of time-domain electromagnetic
solvers throughout microwave research and industry, their
convergence properties became an issue of great practical
importance. An engineer asked to include an EM solver in
his toolkit will typically ask two questions. What level of
accuracy can | expect using my computer resources? How
will the accuracy improve if | upgrade to a more powerful
computer?

The answers to such questions have been sought in
many publications including a well-known text book [1].
Two directions of research can be distinguished. The first
one considers the characteristic equations of the FDTD
method, thus proving its stability [2], energy conservation
[3], and immunity to spurious modes [4][5]. Although
characteristic equations can be mathematically formulated
on arbitrary meshes [1, Ch.11], physicaly meaningful
conclusions are extracted on a uniform mesh, where the
only error is the 2™ order phase/frequency error due to
numerical dispersion. For a nonuniform [6], conformal [7]
or inhomogeneous [8][9] mesh local errors of field
approximation are studied instead. Although the 1% order
truncation error is then revealed, the overall convergence
of phase errors investigated empirically [10] or
anadlytically [11] is found to be of the 2" order. This
phenomenon was for the first time explained by Monk [12]
who showed that nonuniform FDTD belongs to the
category of the supraconvergent methods [13].

The present paper reveals supraconvergence of
amplitude errors caused by numerica reflections or

attenuation. It also shows that supraconvergence extends
to the case of conforma meshes used for improved PEC
boundary approximations, such as those proposed in
[14]..[18]. Severa concepts for enhancing the
supraconvergence effects, and thus improving the accuracy
of coarse mesh solutions, are proposed.

B. Original contributions of the present work

We investigate the effects of nonuniform meshes in free
space, and then of PEC boundary approximations:
1. We show that in the case of nonuniform meshes there
appear two new numerical artifacts: reflection and
attenuation/amplification. Formulae describing them are
analytically derived and verified in FDTD simulations.
2. We show that each numerical artifact may convergein a
different order. We propose a modification, which ensures
the 4™ order convergence of a numerical reflection error
caused by a change in cell size. We aso propose recipes
for frequency-selective error reduction.
3. We show that the EM fields are amplified or attenuated
as the wave propagates over a continuoudly varying mesh
in alossess and source-free medium.
4. We propose "linearised merging” of conformal cells,
which practically eliminates error function discontinuities
investigated analytically in [18] and empirically herein.
5. We combine “linearised” with “directional merging”.
Conformal FDTD based on these concepts ensures
smooth 2" order convergence. It is thus recommended for
all engineering applications, especially those incorporating
an FDTD solver into optimisation loops.

Il. STEPPED NONUNIFORM MESH

The simplest nonuniform mesh is created by applying
two different cell sizesin the two regions R1, R2:

R1: Dz=Dz forz<zy R2:Dz=Dzforz z (D]

Without the loss of generality we can assume that z=z; is
the plane of tangential E-field nodes updated by:

E*Y(z0)=EX(20)+[H"*"**(2,+0.5D2,)-H*"*%(2,-0.5Dz,)]/C
where C=0.5 e (Dz+Dz,) / Dt )]
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We then consider a TEM wave travelling from R1 to R2
and we insert the individual dispersion relations of R1 and
R2 into (1). The resulting expression remains
contradictory until we alow for a reflected wave in R1.
Finally, the numerical reflection coefficient reads:

G= (1-k)/ (1+ k) (3)
with k = cos (0.5b, Dz) / cos (0.5b, Dz;)

We find that the reflection coefficient is real. It is
positive if a wave propagates from fine to coarse mesh,
and negative vice versa. These properties have been
confirmed by extracting the reflection coefficient from the
FDTD simulations (navy blue curve of Fig.1).

The numerical reflection is a supraconvergent effect
since it exhibits quadratic reduction, even though the
approximation of the H-field spatial derivative inherent in
(1) includes the 1% order truncation error [1][6]. Several
concepts for further limiting the reflection error
(enhancing its supraconvergence) are hereby proposed:

1 By inserting a section of cells of an intermediate
size (green curve in Fig.1) reflections are reduced to zero
when this section is a half-wavelength transformer but
reflection maxima follow the original quadratic curve.

2. Frequency-selective enhancement can aso be
obtained by introducing asymmetry of the stencil (yellow
curvein Fig.1):

E“"!(2)=E(2o)+[a H"*%(2,+0.5Dz)-b H**%(2-0.5D2)]/C
whereb=1-a and b / a=k 4

3. Wide-band enhancement and the 4™ order
convergence are obtained by enforcing linearised E-field
distribution (red curve in Fig.1). We note that if Dz>Dz,
then (1) describes the E-field locally with the 2™ order but

in the plane:

Z =7,-0.5(Dz-Dz,) ©)
A corrected value of E(z)* is:

E(z)* = p EX(z:*Dz) + 4 E'@) (6)

where p:0.5(DZ]_'D22) / DZ]_, q:D22/ DZ]_
0.08

—X standard FDTD (2)
—X with section of ten 0.75mm cells
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Fig.l: The magnitude of numerical reflections at the
boundary between Dz;=1mm and Dz,=0.1mm meshes.

I11. CONTINUOUSLY VARYING NONUNIFORM MESH

Let us assume that a transition from input region
meshed with cell size Dz, to output region meshed with Dz,
is accomplished through a linearly meshed transition
region, with consecutive cell sizes given by:

Dz =Dz, +d, i=1,..,n (7)

Similarly to the previous case of a single-step transition,
in the input region we will usualy observe numerical
reflections. Fig.2 plots the reflection coefficient extracted
from the FDTD simulations with pulse excitation when
Dz;=1mm, Dz,=0.1mm, for severa values of step d and,
consequently, various length | of the mesh transition
section. Average convergence rates are of the 1.1..1.6
order. Thus the 4" order correction (6) remains the most
competitive recipe.

It is however interesting to investigate field behaviour
within the linearly varying mesh section. The dispersion
relation continuously varies in space, but more importantly
— it cannot be satisfied by areal value of b. We must then
alow the spatial field dependence to be governed by
function:

exp(-gg), with g=a+jb. (8)

At the boundary between cells Dz,; and Dz the term
relating a and b takes the form:
0.5cosDsin(2B)sh(2A)-sinD[sh*Acos’B-sin’Bch?A]=0 (9)
where A=0.5aDz, B=0.5bDz,Dz=0.5(Dz.,+Dz),D=0.5b d,
and sh, ch denote hyperbolic sine and cosine functions.

Relation (9) between a and b is graphically presented in
Fig.3. Both B and D are assumed positive, which means
that the wave is travelling from fine to coarse mesh. A
negative value of A, in view of (8), entails that the fields
are numericaly amplified. The fields will be numerically
attenuated if awave travels from coarse to fine mesh.

The effect of numerical amplification / attenuation
seems to contradict the widely known property of energy
conservation in FDTD. However, please note that energy
conservation has been proven versus time while
amplification / attenuation takes place versus space. Fig.4
shows the result of FDTD simulation of a 30GHz plane
wave travelling between regions meshed with Dz;=1mm
and Dz,=0.1mm, respectively, through a 9.35mm transition
section. This scenario has been previously analysed with a
pulse excitation (navy blue curve in Fig.2) and zero
reflection coefficient at 30GHz has been detected. Indeed,
we now obtain a pure travelling wave in both input and
output regions. However, the numerical attenuation in the
transition region is visible on the electric field envelope
(magenta), and even more clearly on the zoomed fragment
of amagnetic field envelope (blue, shown in the inset).

Please note that the numerical attenuation / amplification
is another supraconvergent phenomenon in FDTD. While
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the local truncation error in the transition region is of the
1% order, the curves of Fig.3 reveal quadratic decrease of
the attenuation/amplification factor.
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Fig.2: The magnitude of numerica reflections when a
transition from mesh Dz=1lmm to Dz=0.Imm is
accomplished through a section of linear mesh of length I.
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Fig.3: Predicted numerical attenuation of waves

propagating over alinearly-meshed region.
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Fig.4: Electric (magenta) and zoomed magnetic (blue)
fields of a 30GHz plane wave travelling in air between
regions meshed with Dz;=1lmm (left) and Dz,=0.1mm
(right), through a region of d=0.1mm linear mesh
Attenuation between cursorsis 1.0261 (0.224dB).

IV. OFFSET METAL BOUNDARIES

Imperfect approximation of metal boundaries parallel to,
but offset from, the mesh nodes introduces frequency error
in eigenvalue problems [5] or, equivaently, phase error in
deterministic problems [18]. Error reduction can be
obtained by conformal meshing, which in this 1D case
reduces to modifications of boundary cells. However,
conformal methods used so far exhibit error discontinuities

(Fig.5). Therefore, athough they provide the 2™ order
convergence with frequency, convergence Wwith
discretisation will typically be slower, and the solutions
will have discontinuities wherever the mesh topology
(number of cells) changes.

df [%] —
0TSy __simple cell merging [16]
____present - linearised cell merging
o Length [mm] |
Fig.5: Relative error in fundamental eigenfrequency of a

rectangular resonator of length 9..10mm, calculated by
conformal FDTD schemes for basic cell size of Imm.

We hereby put forward the concept of “linearised
merging”, which incorporates linear variation of tangential
E-fiedd near PEC into the tangentia H-field update
equation. If PEC boundary is at z=2d, a corrected value H*
at the last at z=-0.5Dz node is modified as:

H* (-0.5D2)= u H(-0.5Dz) - v H(-1.5D2) (10)
where u=(2Dz +d)/(2Dz +2d), v=d/(2Dz +2d)

As shown in Fig.6, the linearised merging ensures that
the errors become practicaly independent of circuit
positioning on the mesh.

V. CURVED AND OBLIQUE METAL BOUNDARIES

Space limitations of this Summary do not alow for
theoretical discussion of the 2D and 3D conformal
approximations. This theoretical background will be given
in a journa paper, while presently we shall consider an
example of Fig.6 pointing to different orders of
supraconvergence phenomena on different meshes.

Stair-case approximation is locally of the 0" order, i.e.,
it amounts to the distortion of resonator dimensions.
Convergence of dair-case FDTD with the refined
discretisation achieves the 1.5 order (blue line). For
conformal methods without cell merging [17] and with
simple merging [16] the results at two discretisations are
taken from [18]. These results are quite close for both
methods, and are thus marked by a common black square.

A competitive conformal approach has been proposed in
[7]1[15]. It divides a small cell with aline perpendicular to
the PEC boundary, and adds the two parts to the two cells
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located in the direction parallel to the PEC boundary. We
shall cal this approach “directional merging”. The
convergence of its preliminary implementation of [15] was
of the 2.8" order (red line). The improved version
combining directional and linearised merging (green line)
shows the 3.4™ order.
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Fig.6:

Relative error in fundamental eigenfrequency of a
cylindrical resonator calculated by stair-case (blue) and
conformal FDTD (black—nho merging; red — directional
merging, green—linearised directional merging).

V1. CONCLUSIONS

Numerical artifacts arising on nonuniform FDTD
meshes have been revealed and classified as amplitude
errors due to numerical reflections or
attenuation/amplification, and phase errors due to
imperfect approximation of PEC boundaries. Formulae for
evaluating those errors have been analytically derived and
verified in simulations. Simple recipes for suppressing the
errors and enhancing their order of supraconvergence with
refined discretisation have been proposed. Conformal
modelling based on directional and linearised cell merging
is recommended for practical applications as it is free of
error discontinuities and thus ensures smooth and fast
convergence.
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